C. Hinsley

11 April 2024


This is a reference for bifurcation values of the truncated tent map associated with the attainment of each Sharkovsky type (including homoclinic bifurcations from the Sharkovsky stratification of $C^0(I, I)$).

The truncated tent map $T_h: [0, 1] \to [0, 1]$. Attributed to Matilde Marcolli - Sharkovsky’s Ordering and Chaos: Introduction to Fractal Geometry and Chaos.

The truncated tent map $T_h: [0, 1] \to [0, 1]$. Attributed to Matilde Marcolli - Sharkovsky’s Ordering and Chaos: Introduction to Fractal Geometry and Chaos.

Sharkovsky-type bifurcation in $T_h$ $h$ (exact) $h$ (decimal expansion)
$F(1)$ $0$ $0$
$F(2)$ $2/3$ $\sim 0.6666666667$
$F(4)$ $4/5$ $0.8$
$F(8)$ $14/17$ $\sim0.8235294118$
$F(16)$ $212/257$ $\sim0.8249027237$
$F(32)$ $54062/65537$ $\sim0.8249080672$
$F(64)$ $3542953172/4294967297$ $\sim0.8249080673$
$F(2^n), \quad n \gg 0$ $\displaystyle 1-\frac{1}{2^{2^{n-1}}+1}\prod_{k=0}^{n-2} 2^{2^k}-1$ $\sim0.8249080673$
$H(2^\infty) = F(2^\infty)$ $\displaystyle 1-\frac12\prod_{k=0}^\infty \left(1 - \frac{1}{2^{2^k}}\right)$ $\sim0.8249080673$
$H(2^n)=F(2^{n-1}(2\infty+1)), \quad n \gg 0$ $\frac{(2^{2^n}-2)\left[\prod_{i=0}^{n-2}(2^{2^i}-1)\right]\left[1+\sum_{j=0}^{n-2}\frac{1}{\prod_{m=0}^j(2^{2^m}-1)}\right]+2^{2^{n-1}}+1}{2^{3\cdot2^{n-1}-1}+2^{2^n-1}}$ $\sim0.8249080673$
$H(64) = F(32(2\infty+1))$ $\frac{32677975214510728853054477101}{39614081266355540833626750976}$ $\sim0.8249080673$
$H(32) = F(16(2\infty+1))$ $\frac{116097260989651}{140739635838976}$ $\sim0.8249080673$
$F(16(2n+1)), \quad n \gg 0$ $\frac{997252661111262790079278 \cdot 4294967296^{n-1}}{4294967295(2^{16(2n+1)}-1)} - \frac{3489660928}{4294967295(2^{16(2n+1)}-1)}?$ $\sim0.8249080673$
$F(80)$ $\frac{997252661343453822397650}{1208925819614629174706175}$ $\sim0.8249080673$
$F(48)$ $\frac{232190979026130}{281474976710655}$ $\sim0.8249080673$
$H(16) = F(8(2\infty+1))$ $6946861/8421376$ $\sim0.8249080673$
$F(8(2n+1)), \quad n \gg 0$ $\displaystyle \frac{3556792832 \cdot 65536^{n-1} - 212}{257(2^{8(2n+1)}-1)}$ $\sim0.8249080673$
$F(56)$ $\frac{59440890630689580}{72057594037927935}$ $\sim0.8249080673$
$F(40)$ $\frac{906996011820}{1099511627775}$ $\sim0.8249080673$
$F(24)$ $13839660/16777215$ $\sim0.8249080673$
$H(8) = F(4(2\infty+1))$ $1795/2176$ $\sim0.8249080882$
$F(4(2n+1)), \quad n \gg 0$ $\displaystyle \frac{57440 \cdot 256^{n-1}-14}{17(2^{4(2n+1)}-1)}$ $\sim0.8249080882$
$F(20)$ $288326/349525$ $\sim0.8249080896$
$F(12)$ $1126/1365$ $\sim0.8249084249$
$H(4) = F(2(2\infty+1))$ $33/40$ $0.825$
$F(2(2n+1)), \quad n \gg 0$ $\displaystyle \frac{33 \cdot 16^n-24}{10(2^{2(2n+1)}-1)}$ $\sim0.825$
$F(26)$ $55364812/67108863$ $\sim0.8250000004$
$F(22)$ $3460300/4194303$ $\sim0.8250000060$
$F(18)$ $216268/262143$ $\sim0.8250000954$
$F(14)$ $13516/16383$ $\sim0.8250015260$
$F(10)$ $844/1023$ $\sim0.8250244379$
$F(6)$ $52/63$ $\sim0.8253968254$
$H(2) = F(2\infty+1)$ $5/6$ $\sim0.8333333333$
$F(2n+1), \quad n \gg 0$ $\displaystyle \frac{5 \cdot 4^n-2}{3(2^{2n+1}-1)}$ $\sim0.8333333333$
$F(31)$ $1789569706/2147483647$ $\sim0.8333333334$
$F(29)$ $447392426/536870911$ $\sim0.8333333336$
$F(27)$ $111848106/134217727$ $\sim0.8333333346$
$F(25)$ $27962026/33554431$ $\sim0.8333333383$
$F(23)$ $6990506/8388607$ $\sim0.8333333532$
$F(21)$ $1747626/2097151$ $\sim0.8333334128$
$F(19)$ $436906/524287$ $\sim0.8333336512$
$F(17)$ $109226/131071$ $\sim0.8333346049$
$F(15)$ $27306/32767$ $\sim0.8333384198$
$F(13)$ $6826/8191$ $\sim0.8333536809$
$F(11)$ $1706/2047$ $\sim0.8334147533$
$F(9)$ $426/511$ $\sim0.8336594912$
$F(7)$ $106/127$ $\sim0.8346456693$
$F(5)$ $26/31$ $\sim0.8387096774$
$F(3)$ $6/7$ $\sim0.8571428571$
$H(1)$ $1$ $1$

The bifurcation value to $F(2^\infty)$ is twice the Prouhet-Thue-Morse constant. I obtained the closed form of this value from this Wikipedia page. This value is transcendental.


Notably, the truncated tent map has a quadratic limit in its sequence of period-doubling bifurcation values, rather than the geometric limit observed for quadratic maps like the logistic map (or any smooth unimodal map with single turning point).


The denominators for $F(2^k(2n+1))$ are easy: they are $2^{2^k(2n+1)}-1$. The numerators are governed by affine recurrence relations.


For the homoclinic bifurcation values, the denominators are given by $2^{3\cdot2^{n-1}-1}+2^{2\cdot2^{n-1}-1}$ for $H(2^n), n \geq 1$. This is a multiple of Fermat numbers, also appearing in an article by Bugeaud and Queffélec, Theorem 1. Meanwhile, the numerators are given by $k_n(2^{2^n}-2)+2^{2^{n-1}}+1$, where $k_1 = 1$ and $k_{n+1} = k_n(2^{2^{n-1}}-1)+1$ (OEIS A162634), a recurrence relation which has closed form

$$ k_n = \left[\prod_{i=0}^{n-2}(2^{2^i}-1)\right]\left[1+\sum_{j=0}^{n-2}\frac{1}{\prod_{m=0}^j(2^{2^m}-1)}\right]. $$

I.e., the bifurcation value for $H(2^n)$ is

$$ h = \frac{(2^{2^n}-2)\left[\prod_{i=0}^{n-2}(2^{2^i}-1)\right]\left[1+\sum_{j=0}^{n-2}\frac{1}{\prod_{m=0}^j(2^{2^m}-1)}\right]+2^{2^{n-1}}+1}{2^{3\cdot2^{n-1}-1}+2^{2^n-1}}. $$


The code for the first cell in CobwebTool to construct the truncated tent map is as follows:

from typing import List, Tuple

h = 1

orbits : List[List[float]] = [[]]
extra_points : List[Tuple[float, float]] = [(0,0),(1,0)] + ([(0.5,1)] if h==1 else [] if h==0 else [(h/2,h), (1-h/2,h)])
iterated_graph_orders = [1]

I used [Zyc1] equation (31) to obtain the values for $F(2^k)$ bifurcations. The code is as follows: